Account
Orders
Advanced search
An Introduction
Louise Reader
Read on Louise Reader App.
This book discusses different aspects of group recommender systems, which are systems that help to identify recommendations for groups instead of single users. In this context, the authors present different related techniques and applications. The book includes in-depth summaries of group recommendation algorithms, related industrial applications, different aspects of preference construction and explanations, user interface aspects of group recommender systems, and related psychological aspects that play a crucial role in group decision scenarios.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
This ebook is DRM protected.
LCP system provides a simplified access to ebooks: an activation key associated with your customer account allows you to open them immediately.
ebooks downloaded with LCP system can be read on:
Adobe DRM associates a file with a personal account (Adobe ID). Once your reading device is activated with your Adobe ID, your ebook can be opened with any compatible reading application.
ebooks downloaded with Adobe DRM can be read on:
mobile-and-tablet To check the compatibility with your devices,see help page
Alexander Felfernig is a full professor at the Graz University of Technology (Austria) since March 2009 and received his PhD in Computer Science from the University of Klagenfurt. He directs the Applied Software Engineering (ASE) research group. His research interests include configuration systems, recommender systems, model-based diagnosis, software requirements engineering, different aspects of human decision making, and machine learning. In these areas, he is engaged in national research projects as well as in a couple of European Union projects. Alexander Felfernig has published numerous papers in renowned international conferences and journals (e.g., AI Magazine, Artificial Intelligence, IEEE Transactions on Engineering Management, IEEE Intelligent Systems, Journal of Electronic Commerce, and User Modeling and User-Adapted Interaction) and is a co-author of the book on "Recommender Systems" published by Cambridge University Press. He also acted as an organizer of internationalconferences such as the ACM International Conference on Recommender Systems,the International Symposium on Methodologies for Intelligent Systems, and the ACM International Systems and Software Product Line Conference, and is a member of the Editorial Board of Applied Intelligence and the Journal of Intelligent Information Systems. With his research, he contributed to the development of commerical decision support and recommender systems.
Ludovico Boratto is a researcher at the Department of Mathematics and Computer Science of the University of Cagliari (Italy). His research interests focus on recommender systems and their impact on the different stakeholders, both considering accuracy and beyond-accuracy evaluation metrics. He has authored more than 60 papers and published his research in top-tier conferences and journals. His research activity also brought him to give talks and tutorials at top-tier conferences and research centers (Yahoo! Research). He is editor of the book “Group Recommender Systems: An Introduction”, published by Springer. He is an editorial board member of the “Information Processing & Management” journal (Elsevier) and “Journal of Intelligent Information Systems” (Springer), and guest editor of several journals’ special issues. He is regularly part of the program committees of the main Web conferences, where he received four outstanding contribution awards. In 2012, he got his Ph.D. at the University of Cagliari (Italy), where he was a research assistant until May 2016. From May 2016 to April 2021, he joined Eurecat as Senior Research Scientist in the Data Science and Big Data Analytics research group. In 2010 and 2014, he spent ten months at Yahoo! Research in Barcelona as a visiting researcher. He is a member of ACM and IEEE.
Marko Tkalcic is associate professor at the Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT) at the University of Primorska in Koper, Slovenia. He aims at improving personalized services (e.g. recommender systems) through the usage of psychological models in personalization algorithms. To achieve this, he uses diverse research methodologies, including data mining, machine learning, and user studies. He is editorial board member of the Springer UMUAI journal. He served as Program Chair at the ACM UMAP 2021 conference.
Sign up to get our latest ebook recommendations and special offers