Account
Orders
Advanced search
Louise Reader
Read on Louise Reader App.
This book presents a detailed analysis of the processes of internal damage and healing of damage in high-temperature creep-fatigue. This analysis is based on experimental results and a three-dimensional visualization and simulation method. It focuses on inner cracking type fracture, which is essential to consider for creep-fatigue in actual equipment and structures used at high temperatures for long periods of time. In this book, systematic studies of the fracture are presented by introducing three-dimensional simulation and visualization methods. This book is for designers and researchers in industry specializing in strength of materials at high temperatures. It is also for a postgraduate or higher academic audience specializing in mechanical engineering and materials science engineering. In reading the book it is expected that readers will acquire knowledge of evaluation techniques for high-temperature creep-fatigue damage. In addition, this book allows readers toimprove the accuracy of damage evaluation, design materials for longer lifetimes, and apply the described techniques to other materials.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
This ebook is DRM protected.
LCP system provides a simplified access to ebooks: an activation key associated with your customer account allows you to open them immediately.
ebooks downloaded with LCP system can be read on:
Adobe DRM associates a file with a personal account (Adobe ID). Once your reading device is activated with your Adobe ID, your ebook can be opened with any compatible reading application.
ebooks downloaded with Adobe DRM can be read on:
mobile-and-tablet To check the compatibility with your devices,see help page
Weisheng Zhou is Professor of Ritsumeikan University in Japan. He is Foreign Fellow of The Engineering Academy of Japan (EAJ). He graduated from Zhejiang University and received his Ph.D. at the Graduate School of Kyoto University. He has served as Chief Researcher and Research Counselor of Research Institute of Innovative Technology for the Earth (RITE), Special Professor of Osaka University. His major is the high-temperature strength of metal materials, as well as energy systems, earth environment, and policy engineering. His books include East Asian Low-Carbon Community (Springer, 2021) and others.
Junji Sakamoto is Assistant Professor of Okayama University in Japan. He graduated from Kyushu University and received master’s and doctoral degrees in engineering from the same university for his research on small defect considered as a crack for fatigue limit evaluation. His main research area is the fatigue strength of structural materials, with a particular attention to the topics of the initiation and growth of small cracks, the small stress concentrator effect, and the evaluation methods of the strength using a simple experiment. He has received an academic award from the Society of Materials Science, Japan, for his work in fatigue strength.
Sign up to get our latest ebook recommendations and special offers