Account
Orders
Advanced search
Louise Reader
Read on Louise Reader App.
This thesis investigates the mathematical problem of parameter identification in an equation arising from the study of how cells move on an embryo during its development. The motion of the cells can be modeled as particles evolving on a two-dimensional manifold according to a stochastic differential equation. The specific focus here is on estimating the drift parameter of this equation by observing the positions of a finite number of particles at different points in time. The general approach to approximate the solution of this ill-posed problem is to minimize a Tikhonov functional based on a regularized log-likelihood.To assess the error of this approximation, tools from the theory of ill-posed problems are required. The thesis begins with a chronological review of fundamental results in nonlinear ill-posed problems, with the aim of motivating the assumptions underlying the main result as well as the techniques employed in its analysis from a historical perspective.
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
This ebook is DRM protected.
LCP system provides a simplified access to ebooks: an activation key associated with your customer account allows you to open them immediately.
ebooks downloaded with LCP system can be read on:
Adobe DRM associates a file with a personal account (Adobe ID). Once your reading device is activated with your Adobe ID, your ebook can be opened with any compatible reading application.
ebooks downloaded with Adobe DRM can be read on:
mobile-and-tablet To check the compatibility with your devices,see help page
Nikolas Uesseler is pursuing a PhD in applied mathematics at the University of Münster in the field of inverse problems and mathematical imaging in Prof. Benedikt Wirth's research group.
Sign up to get our latest ebook recommendations and special offers