Account
Orders
Advanced search
This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in...
In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics such as representation theory, algebraic geometry, quantum field theory, and string theory. One of the challenges of...
This book is based on the author's mini course delivered at Tokyo University of Marine Science and Technology in March 2019. The shuffle approach to Drinfeld–Jimbo quantum groups of finite type (embedding their "positive" subalgebras into q-deformed shuffle...
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces...
Hermite's theorem makes it known that there are three levels of mathematical frames in which a simple addition formula is valid. They are rational, q-analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive...
This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conformal field theories. The authors obtain concise geometric expressions for the objects describing bulk and boundary fields...
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock...
Rich information-theoretic structure in out-of-equilibrium thermodynamics exists in both the classical and quantum regimes, leading to the fruitful interplay among statistical physics, quantum information theory, and mathematical theories such as matrix analysis and...
This book is an exposition of recent progress on the Donaldson–Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi–Yau 3-folds. Later, it turned out that the DT invariants have many...
The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in...
In mathematical physics, one of the fascinating issues is the study of integrable systems.In particular, non-perturbative techniques that have been developed have triggered significant insight for real physics. There are basically two notions of integrability: ...
This book focuses on the Symmetric Informationally Complete quantum measurements (SICs) in dimensions 2 and 3, along with one set of SICs in dimension 8. These objects stand out in ways that have earned them the moniker of "sporadic SICs". By some standards, they...
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates...
The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator...
This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history...
This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for...
This book provides self-contained proofs of the existence of ground states of several interaction models in quantum field theory. Interaction models discussed here include the spin-boson model, the Nelson model with and without an ultraviolet cutoff, and the Pauli–Fierz...
What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions.After a brief preface flashing the...
This Brief presents in a self-contained, non-technical and illustrative fashion the state-of-the-art results and techniques for the dynamics of extremal black holes. Extremal black holes are, roughly speaking, either maximally rotating or maximally charged. Astronomical...
This book gives a rigorous treatment of entanglement measures in the general context of quantum field theory. It covers a broad range of models and the use of fields allows us to properly take the localization of systems into account. The required mathematical...
Les livres numériques peuvent être téléchargés depuis l'ebookstore Numilog ou directement depuis une tablette ou smartphone.
PDF : format reprenant la maquette originale du livre ; lecture recommandée sur ordinateur et tablette EPUB : format de texte repositionnable ; lecture sur tous supports (ordinateur, tablette, smartphone, liseuse)
DRM Adobe LCP
LCP DRM Adobe
Sign up to get our latest ebook recommendations and special offers